Formal Groups of Elliptic Curves with Potential Good Supersingular Reduction

نویسنده

  • ÁLVARO LOZANO-ROBLEDO
چکیده

Let L be a number field and let E/L be an elliptic curve with potential supersingular reduction at a prime ideal ℘ of L above a rational prime p. In this article we describe a formula for the slopes of the Newton polygon associated to the multiplication-by-p map in the formal group of E, that only depends on the congruence class of p mod 12, the ℘-adic valuation of the discriminant of a model for E over L, and the valuation of the j-invariant of E. The formula is applied to prove a divisibility formula for the ramification indices in the field of definition of a p-torsion point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The main conjecture for CM elliptic curves at supersingular primes

At a prime of ordinary reduction, the Iwasawa “main conjecture” for elliptic curves relates a Selmer group to a p-adic L-function. In the supersingular case, the statement of the main conjecture is more complicated as neither the Selmer group nor the p-adic L-function is well-behaved. Recently Kobayashi discovered an equivalent formulation of the main conjecture at supersingular primes that is ...

متن کامل

2 9 A ug 2 00 7 On the modularity of supersingular elliptic curves over certain totally real number fields

We study generalisations to totally real fields of the methods originating with Wiles and Taylor-Wiles ([32], [31]). In view of the results of Skinner-Wiles [26] on elliptic curves with ordinary reduction, we focus here on the case of supersingular reduction. Combining these, we then obtain some partial results on the modularity problem for semistable elliptic curves, and end by giving some app...

متن کامل

2 2 N ov 2 00 4 Iwasawa Theory of Elliptic Curves at Supersingular Primes over Z p - extensions of Number Fields

In this paper, we make a study of the Iwasawa theory of an elliptic curve at a supersingular prime p along an arbitrary Zp-extension of a number field K in the case when p splits completely in K. Generalizing work of Kobayashi [8] and Perrin-Riou [16], we define restricted Selmer groups and λ ± , µ ±-invariants; we then derive asymptotic formulas describing the growth of the Selmer group in ter...

متن کامل

Iwasawa Theory of Elliptic Curves at Supersingular Primes over Zp-extensions of Number Fields

In this paper, we make a study of the Iwasawa theory of an elliptic curve at a supersingular prime p along an arbitrary Zp-extension of a number field K in the case when p splits completely in K. Generalizing work of Kobayashi [9] and Perrin-Riou [17], we define restricted Selmer groups and λ±, μ±-invariants; we then derive asymptotic formulas describing the growth of the Selmer group in terms ...

متن کامل

Drinfeld Modules with No Supersingular Primes

We give examples of Drinfeld modules φ of rank 2 and higher over Fq(T ) that have no primes of supersingular reduction. The idea is to construct φ so that the associated mod ` representations are incompatible with the existence of supersingular primes. We also answer a question of Elkies by proving that such obstructions cannot exist for elliptic curves over number fields. Elkies [El1] proved t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012